Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomater Sci Polym Ed ; 33(15): 1924-1938, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35695022

RESUMO

The use of hydrogel-based contact lens materials holds promise for ophthalmic drug delivery by increasing drug residence time, improving drug bioavailability, reducing administration frequency, and enhancing special site targeting. Issues such as ease of manufacturing, lens comfort and appropriate release kinetics must be considered. Furthermore, the high water content of hydrogel materials can result in rapid and poorly controlled release kinetics. Herein, we modified common hydrogels used in contact lens manufacturing with phenylboronic acid (PBA). PBA addresses these material design issues since boronate esters are easily formed when boron acid and diols interact, opening up a pathway for simple modification of the model lens materials with saccharide based wetting agents. The wetting agents have the potential to improve lens comfort. Furthermore, the hydrophobicity of PBA and the presence of diols can be useful to help control drug release kinetics. In this work, polymerizable 3-(acrylamido)phenylboronic acid (APBA) was synthesized and incorporated into various hydrogels used in contact lens applications, including poly(2-hydroxyethylmethacrylate) (PHEMA), polyvinylpyrrolidone (PVP) and poly(N,N-dimethyl acrylamide) (PDMA) using UV induced free radical polymerization. The APBA structure and its incorporation into the hydrogel materials were confirmed by NMR and FTIR. The materials were shown to interact with and bind wetting agents such as hyaluronan (HA) and hydroxypropyl guar (HPG) by simple soaking in an aqueous solution. The equilibrium water content of the modified materials was characterized, demonstrating that most materials are still in the appropriate range after the introduction of the hydrophobic PBA. The release of three model ophthalmic drugs with varying hydrophilicity, atropine, atropine sulfate and dexamethasone, was examined. The presence of PBA in the materials was found to promote sustained drug release due to its hydrophobic nature. The results suggest that the modification of the materials with PBA was able to not only provide a mucoadhesive property that enhanced wetting agent interactions with the materials, but had the potential to alter drug release. Thus, the modification of contact lens materials with mucoadhesive functionality may be useful in the design of hydrogel contact lenses for ophthalmic drug release and wetting agent binding.


Assuntos
Lentes de Contato Hidrofílicas , Lentes de Contato , Acrilamidas , Atropina , Derivados da Atropina , Boro , Ácidos Borônicos , Preparações de Ação Retardada , Dexametasona , Sistemas de Liberação de Medicamentos , Ácido Hialurônico/química , Hidrogéis/química , Poli-Hidroxietil Metacrilato/química , Povidona , Água/química , Agentes Molhantes/química
2.
Bioconjug Chem ; 33(4): 634-642, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35353491

RESUMO

Radiolabeling a protein, molecule, or polymer can provide accurate and precise quantification in biochemistry, biomaterials, pharmacology, and drug delivery research. Herein, we describe a method to 125I label two different polymers for precise quantification in different applications. The surfaces of model contact lenses were modified with phenylboronic acid to bind and release the natural polymer, hyaluronic acid (HA); HA uptake and release were quantified by radiolabeling. In the second example, the in vivo distribution of a mucoadhesive micelle composed of the block copolymer of poly(lactide)-b-poly(methacrylic acid-co-acrylamidophenylboronic acid) was investigated. The presence of phenyl boronic acid groups (PBA), which bind to mucosal surfaces, was proposed to improve the retention of the micelle. 125I labeling of polymers was examined for quantification of microgram amounts of HA present on a contact lens or to evaluate the enhanced retention of PBA micelles on mucosal surfaces in vivo. The introduction of phenol groups onto the polymers allowed for the labeling. HA was modified with phenol groups through a coupling reaction of its carboxylic acid with hydroxybenzylamine. Phenol functional block copolymer micelles with and without PBA were synthesized by including N-(4-hydroxyphenethyl)acrylamide during polymerization. The phenol groups of HA and the block copolymers were labeled with 125I using a modified ICl labeling method. 125I labeling enabled quantification of HA loading and release including the effect of varying amounts of PBA on the contact lens surfaces. Micelles made from 125I-labeled block copolymers with and without PBA were administered intranasally to Brown Norway rats. The animals were sacrificed either immediately after or 4 h after their last nasal instillation, and the nasopharyngeal tissues were removed and quantified. Radioactivity measurements demonstrated that the presence of the PBA mucosal binding groups led to approximately four times higher retention. The HA and block copolymer 125I labeling presented in this article demonstrates the utility of the method for quantification and tracking of microgram quantities of polymers in diverse applications.


Assuntos
Micelas , Polímeros , Animais , Sistemas de Liberação de Medicamentos , Fenol , Polietilenoglicóis/química , Polímeros/química , Ratos
3.
Acta Biomater ; 141: 151-163, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35081434

RESUMO

Thermo-gels based on chitosan crosslinked poly(N-isopropylacrylamide) were developed as alternatives to conventional eye drops for the sustained release of ketotifen fumarate in the treatment of allergic conjunctivitis. The thermo-gelling properties of the base polymer were altered prior to crosslinking with chitosan by incorporation of the hydrophilic and hydrophobic comonomers acrylic acid and methyl methacrylate respectively. Varying amounts of chitosan were incorporated by ionic interaction to produce polyelectrolyte complexes or by carbodiimide chemistry to produce covalently crosslinked networks. The lower critical solution temperature of all the chitosan crosslinked thermo-gels produced was below the surface temperature of the eye. All the chitosan crosslinked thermo-gels were found to have greater than 80% equilibrium water contents following gelation. The method and amount of chitosan incorporation allowed for tailor-ability of material rheologic properties, with full degradation occurring over a one-to-four-day period, and tailorable rates of release of 40-60% of the loaded allergy medication ketotifen fumarate. The chitosan crosslinked thermo-gels were demonstrated to be nontoxic both in vitro and in vivo. It was demonstrated that the synthesized materials could be applied to the inferior fornix of eye, sustaining a multiple day release of ketotifen fumarate, as an alternative to conventional eyedrops. STATEMENT OF SIGNIFICANCE: Topical eyedrops are the main treatment modality for anterior ocular conditions. However, due to the natural clearance mechanisms of the eye, topical eyedrops are well established to be largely ineffective as a method of drug delivery. Herein, we investigate a method of altering thermo-gel properties of an n-isopropylacrylamide based polymer to enable the incorporation of greater amounts of chitosan by different methods of crosslinking. By controlling the synthesis parameters, final material properties can be tailored to impart ideal spreading, retention on the eye, and the rate of degradation and drug release over several days. This work also focuses on studying the rheological properties of the chitosan crosslinked thermo-gels which has not been investigated previously.


Assuntos
Quitosana , Hidrogéis , Acrilamidas , Acrilatos , Quitosana/química , Hidrogéis/química , Cetotifeno , Metacrilatos , Metilmetacrilato , Soluções Oftálmicas , Polímeros , Temperatura
4.
RSC Adv ; 11(55): 34631-34635, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-35494753

RESUMO

A method of making block copolymers utilizing free-radical polymerization and subsequent polymer conjugation is described. A disulphide functional radical initiator was used to polymerize methacrylic acid and 3-acrylamidophenylboronic acid. After purification, the disulphide bond of the end group was cleaved, revealing a thiol group which was used for subsequent conjugation to a polylactide containing the complementary maleimide functional group. The method is versatile and can be applied to the synthesis of various block copolymers without requiring the use of controlled/living radical polymerization methods.

5.
J Biomater Sci Polym Ed ; 32(5): 581-594, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33187457

RESUMO

Metal-free click-chemistry can be used to create silicone hydrogels for ocular drug delivery applications, imparting the benefits of silicones without catalyst contamination. Previous work has demonstrated the capacity for these materials to significantly reduce protein adsorption. Building upon this success, the current work examines and optimizes different materials in terms of their protein adsorption and drug release capabilities. Specifically, incorporating lower molecular weight poly-ethylene glycol (PEG) is better able to reduce protein adsorption. However, with higher molecular weight PEG, the materials exhibit excellent water content and better drug release profiles. The lower molecular weight PEG is also able to deliver the drug over a period in excess of four months, with the amount of crosslinking having the greatest impact on the amount of drug release. Overall, these materials show great promise for ocular applications.


Assuntos
Polietilenoglicóis , Siloxanas , Química Click , Sistemas de Liberação de Medicamentos , Hidrogéis
6.
Chem Commun (Camb) ; 52(40): 6681-4, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27115741

RESUMO

Azido ß-cyclodextrins were attached to propiolate-functionalized polydimethylsiloxanes by metal-free click chemistry. The obtained telechelic copolymers spontaneously produced elastomeric gums. Demixing and supramolecular associations are the driving forces for the construction of these strongly associated (but reversible) physical networks.


Assuntos
Dimetilpolisiloxanos/química , Elastômeros/química , beta-Ciclodextrinas/química , Elastômeros/síntese química , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...